0=-9x^2+18-3

Simple and best practice solution for 0=-9x^2+18-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-9x^2+18-3 equation:



0=-9x^2+18-3
We move all terms to the left:
0-(-9x^2+18-3)=0
We add all the numbers together, and all the variables
-(-9x^2+18-3)=0
We get rid of parentheses
9x^2-18+3=0
We add all the numbers together, and all the variables
9x^2-15=0
a = 9; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·9·(-15)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*9}=\frac{0-6\sqrt{15}}{18} =-\frac{6\sqrt{15}}{18} =-\frac{\sqrt{15}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*9}=\frac{0+6\sqrt{15}}{18} =\frac{6\sqrt{15}}{18} =\frac{\sqrt{15}}{3} $

See similar equations:

| 2k-3(k+5)=48 | | s^2-3s+54=0 | | ½x+3=2-x | | 1/2x+3=2-x | | (2z-4)^2+12=4 | | (x2-4)(x2-25)=0 | | 4(x+3)=-6x | | F(×)=-8x+8 | | -1/2x=-5/2x-4/7 | | 23a+17=12(5+4a-18 | | -x-9-10=-27 | | 7x/12-56=0 | | 3x+3x+3x3=3+5x | | x/8+7=4 | | 100+20x=240 | | z/8+9=2 | | 1/12=1/2x-7 | | 9y+6y-2=15y-2 | | 6+z=8 | | 2÷r=-3 | | -(x+2)/3-(4-2x)/2=1/6 | | 25y+15-16y=7y+11/2y-9 | | f(20)=20^2+4(20)-12 | | 5x-2/x-4=2 | | 3(x+4)+4(5-x)=2(x-2) | | 3/5(5x-3)=x-2 | | 1/x+5=1/2 | | (9+x)/(3x)=5/6 | | 6x-8x+3=2-(-7) | | 11.1x-1.745=-0.51(3x-9) | | 9r2-5=607 | | -6-6(5x+2)=-108 |

Equations solver categories